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Abstract 

Based on the new energy-transfer equations [Kato 
(1976). Acta Cryst. A32, 458-466; Kato (1979). Acta 
Cryst. A35, 9-16] the integrated intensities (II) are 
calculated. Since the energy-transfer equations have 
physical meanings different from the traditional ones 
originally given by Darwin [Philos. Mag. (1922), 43, 
800-824] and extended by Hamilton [Acta Cryst. 
(1957), 10, 629-634], the method of calculating (II) 
must be modified, particularly in the case of a wide 
incident beam. Since the modified method does not 
include the angular integration, it is much simpler than 
the traditional method. Thus, the analytically rigorous 
expressions of (II) can be obtained for parallel-sided 
crystals including absorption, and for any diffraction 
conditions. 

1. Introduction 

In three previous papers [Kato, 1976a,b, 1979; (I), (II) 
and (III) hereafter], the present author developed a 
statistical dynamical theory of crystal diffraction. With 
this approach, it became possible to discuss primary 
and secondary extinction within a single theoretical 
framework. In fact, a system of energy-transfer 
equations (ET equations) between the direct (O) and 
Bragg-reflected (G) beams could be derived from the 
fundamental wave equations in distorted crystals above 
the critical condition A ~> r, where A is the extinction 
distance and r is the correlation length of the lattice 
phase factors at two different positions. In this paper, 
the integrated intensities of the O and G beams are cal- 
culated with this limited condition, i.e. for the case 
where secondary extinction is predominant. 

The new ET equations are very similar to Hamilton's 
(1957) and Zachariasen's (1967a,b) equations. These 
are also systems of energy-transfer equations in two- 
dimensional reflection space, and are an extension of 
Darwin's (1922) classical system of equations. For this 
reason, in this paper the equations of this type are 
referred to as D - H - Z  or H- Z  equations. The new 
equations are henceforth denoted simply ET equations. 
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The similarity of ET and D - H - Z  equations is 
merely of mathematical form and the physical mean- 
ings are rather different. This was pointed out at the 
end of paper (II). For the sake of completeness the 
differences are summarized in § 2. Because of this 
situation, the traditional method of calculating the inte- 
grated intensities must be modified, particularly in the 
case of a wide incident beam. Fortunately, the modified 
method is much simpler than the traditional. Thus, at 
least in the case of parallel-sided crystals, the exact 
expressions of the integrated intensities of the O and G 
beams can be obtained. 

In the following, the integrated intensities are dis- 
cussed separately for two cases in which the incident 
beam is either sufficiently narrow or wide in space. The 
calculated integrated intensities in these two cases are 
identical, as expected. This indicates that the present 
approach is theoretically satisfactory. 

2. The solution for the incident beam of ~-function 
type 

(a) Fundamental equations 

The ET equations can be written in the following 
forms [equations (II.30a,b)], including the effect of 
normal absorption'* 

~Io 
- -  - -  f l e l o  + O _ g l g ,  ( la)  

c%o 

ei, 
- -  -- /.telg + OgI o. (lb) 
tgs g 

The coupling constants are given by: 

/~e = ~to + 2 Re(Kg x~)T, (2a) 

trg = 21Kgl 2 r, (2b) 

* In fact, I o and Ig are intensities. The energy flow must have the 
magnitude of the Poynting vector (c/4n)(Kl o, KIg). Since the factor 
c/4n, c being the velocity of light, and the angular wave number 
K are common, they are omitted. 
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where /t o is the linear absorption coefficient, Kg the 
reflection strength in amplitude per unit length 
[equation (I.2)] which is proportional to the structure 
factor F e, and r is the correlation length of the lattice 
phase factor defined by equation (I.3). For simplicity, 
the average notation in ( I )  and the suffix in rz are 
omitted here. 

Two points are worth mentioning. 
R e m a r k  (1): I o and I e are not referred to a mono- 

directional beam specified by an angular parameter 0. 
If they are so defined, simple relations like equations (1) 
can no longer be expected. Unless the crystal is very 
nearly perfect, the beam reflected from a monodirec- 
tional beam must be angularly diffuse, so that the 
beam escapes from the angular channel prespecified by 
0. The only way to avoid this complexity is to deal with 
the angularly integrated intensities from the beginning. 
As discussed in paper (II), equations (1) were, in fact, 
derived for the incident beam of 6-type, which is 
obviously a polydirectional wave. 

R e m a r k  (2): The intensity I o which satisfies 
equations (1) does not include the part of the O beam 
passing through a crystal without the Bragg reflection. 
This point was not explicitly mentioned in the previous 
papers. Nevertheless, the statement is obvious because 
the solution (II.26a), or equation (3a) in the following, 
has the form of a power series starting from the term of 
I K e K el 2. Obviously, this term is the sum of the doubly 
reflected beams. 

Jo(So, Se) = I e 6(Se) exp [--fie(So + Sg)l + do(So,  Sg), (5a) 

Jg(S o, sg) = rig(s o, sg). (5b) 

These solutions are obtained with the boundary 
conditions 

Jo = Ie 6(Sg), Jg = 0 (6a,b) 

on the entrance surface. The treatments are math- 
ematically correct but are not adequate for the 
physical requirements of real experiments. As dis- 
cussed in paper (I), the narrow incident wave of unit 
amplitude creates the Bragg reflected beam of amount 
I xg 12, instead of r l ~Cg 12, along the line s e = 0. Equations 
(1) hold only for the intensity fields created by Ielxel z 
( R e m a r k  2). Thus, the present solution (3b) differs 
from solution (5b) by the factor r. We shall discuss this 
point further in § 4. 

(c) In tegrated  intensity [supplement to § 5 o f  paper  (I)] 

The intensity fields must be derived from the wave 
equation by taking an appropriate incident wave. Here, 
we shall consider the spherical wave 

D e = A3(s  e) (7a) 

= A sin 20B 6(Xo), (7b) 

where x o is the coordinate perpendicular to the O beam. 
With these expressions, the total energy (intensity) of 
incidence is 

(b) The solution f o r  the L a u e  cases 

In this section, in order to make the arguments 
concrete, we consider the Laue cases. 

It is already known from paper (II) that the following 
expressions satisfy equations (1): 

Io(So, S e) = IelKeK_el Ii[2~7(SoSe) 1/2] 

X exp[--fie(S o + Se)] , (3a) 

le(So, se ) = ie I xe 12'i0 [ 2e(SoSe) 1/2 ] 

x exp [--fie(So + se)], (3b) 

where I e = A 2, 

e = (% e_e) v2 = 2 f ix  e K_el , (4) 

and I 0 and 11 are the modified Bessel functions of the 
zeroth and first order, respectively. Here, the normal 
absorption factor exp [-fio(So + se)] is multiplied by the 
expressions (II.26a,b). 

Historically, the following expressions were pro- 
posed by Werner, Arrott,  King & Kendrick (1966) in 
the case of a e = tr_ e as the solution of H - Z  equations:* 

E = f IDel2dXo 

= Ie(sin 20n) 2 .f d x  o f exp [i(K x - K ' ) x  o] d K  x d K "  

= (Ie/2rc)(sin 2%) 2 .f d K  x. (8a) 

Using the relation dO = d K x / K ,  we obtain the angular 
density of the incident energy as 

c3E 
- (Ie/2)(sin 20s) z. (8b) 

O0 

If one redefines the integrated intensity of the G beam 
per unit density of c3E/c30,* 

S r R g ( X o ) =  2(sin 20B) -2 I-21 f I g ( X ' , X e )  d X  e, (9) 

where I e is the intensity of the G beam at an 
observation point X e (perpendicular coordinate to the 
G beam) when a point source (7) is put at a position X" 
(perpendicular coordinate to the O beam). 

For the incident beam which is a homogeneous dis- 
tribution of the spherical wave source, the integrated 
intensity must be 

Re s , , (10) = f R e ( X o )  d X o ,  

* In this paper, the intensity fields of the D-H-Z equations are * In equations (9) and (I0), .Id Y is assumed to be unity where Y 
denoted Jo and Jv is the perpendicular coordinate to the reflection plane. 
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where O 2 E/COO cOX" is assumed to be unity. The result is 
identical to that from the plane-wave theory [equation 
(I.28e); PgP]. In fact, the bundle of plane waves assumed 
for calculating P~ satisfies cO2E/cOOcOX" = 1. The 
expression (10), therefore, can be universally used inde- 
pendently of the character of the incident beam. 

(d) The integrated intensity f o r  a parallel-sided crystal 

In the Laue case, expression (9) can be written with 
the use of solution (3b) for Ig in the concrete form 

b 
R S =  2(sinZOn)-21Xgl2?g f exp[-ge(s  o + Sg)] a 

x Io[2a(SoSg) l/z] dx, (11) 

where the coordinates (a,b) and x are shown in Fig. 1, 
and (~o, ?g) are the direction cosines of the directions of 
the O and G beams, respectively, with respect to the 
normal of the crystal. 

From the geometrical relations 

x o = (x - a)y o = sg sin 20 B, 

xg = (b - x)yg = s o sin 20 B, 

(12a) 

(12b) 

(12c) t = s o Yo + Sg )'g, 

we have the width of the intensity field as 

( b -  a) = Ts in  20s/Yo Yg, (13) 

where T is the thickness of the crystal. 
Introducing the normalized parameter 

~= [ x - ½ ( a  + b ) ] /½(b -a )  (14) 

instead of x, and the notations 

° 

M = -  - - +  lu e, N = :  - 
2 70 

(15a,b) 

(15e) L z = aE/yoyg, 

equation (11) can be written in the explicit form 

E 
s,, I 

T 

1 
/ R ( b )  / T ( a )  

Fig. 1. Geometry of diffraction in the case of a narrow incident 
beam and a parallel-sided crystal. E: Entrance point. T and R: 
The region of the intensity field on the exit surface. P: The 
observation point. (a,b,x) indicate the coordinates of the points 
( T,R,P), respectively. 

where 

R S =  Q(T/?o)exp( - -MT)ug(T) ,  (16a) 

1 
1 

ug(T) = ~ f exp(NTOIo[LT(1  -- ~2)1/21 d~ (16b) 

-1 
sinh [ (N 2 + L2)l/2T] 

= (16e) 
(N 1 + LE)I/2T 

Here, Q is the well known expression of the integrated 
intensity per unit volume and the unit intensity of the 
incident beam in-the kinematical theory; i.e. 

O = (2/sin 20s)lxgl 2 

- (  e2 ]2231FgCI2/v2sinZOn. (17) 

Here, C is the polarization factor, v is the volume of the 
unit cell and the other symbols are the notations of 
standard usage. 

When the crystal is sufficiently thin, expression (16a) 
tends to the kinematical expression of the integrated 
intensity 

R ~ =  Q(T/yo), (18) 

so that the extinction coefficient is given by 

S K =  rl = Rg/Rg 
sinh [(N 2 + L2)I/2T] 

(N  z + L2)I/2T 
exp (--MT).  (19) 

Similarly, one can calculate the integrated intensity 
for the direct beam. The formulae corresponding to 
equations (11) and (16) are as follows: 

b 
R s = 2(sin 20s)-zltcgXglyo f exp[--ge(S o + Sg)] Q 

where 

s° t 1/2 
x - -  I i [ 2 o ( s  o Sg) 1/2] dx  (20a) 

\ Sg] 

= Qo[T/(y ° yg)l/2] exp(_MT)uo(T)  ' (20b) 

Qo = (2/sin 20B) IKg x_gl (21) 

and 

1 l ( 1 - - { t  1/2 
Uo(T)= -~ f exp ( N T 0  I I[LT(X -- ~2)1/2] d~ 

--1.1 \ ' ~ +  ~] (22a) 

= cosh [(N 2 + 

N 
- sinh [ (N 2 + L2) 1/z T] 

(N 2 + L2)  1/2 

-- exp (--NT)}.  (22b) 
1 

The integration of equation (22a) is explained in the 
Appendix. 
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In the Bragg case, one can obtain the integrated 
intensity from similar considerations. For parallel-sided 
crystals, however, this is not a wise method. The 
problem will be postponed until § 3 (c). 

3. Integrated intensity for a wide incident beam 

(a) Fundamenta l  equations 

In practice, we more often encounter the case of a 
wide incident beam. The penetrating beam without the 
Bragg reflection then overlaps spatially with the O 
beam in the crystal. The former has to be eliminated 
from the total O beam, because only the latter satisfies 
the differential equation (1) [cf R e m a r k  2 in § 2(a)]. 

Unlike the traditional treatment, therefore, the funda- 
mental equation must be a system of the inhomo- 
geneous equations: 

- - -  7%1 o + o_gIg, (23a) 
Os o 

- - - -  " l le lg  + ~TgI o + QIeexp(-t2ego),  (23b) 
OSg 

where go is the distance between an observation point 
and the corresponding entrance point. The third term 
is responsible for the body source of the intensity fields. 
The expression can be justified by the following 
argument. 

Taking an infinitesimal parallelepiped (Fig. 2), the 
energy of the Bragg reflected beam created by the 
incident beam is given by 

6Eg= QI e exp[--(t, tego)l(6s o 6Sg sin 20B), (24) 

where ( ) is the infinitesimal volume concerned. The 
beam travels in the G direction with a width of 
6Sosin2OB. Therefore, the increment of G beam 
intensity per unit distance of Sg is 

~ g  
-- QI  e exp [--(#ego)]. 

(b) The solution f o r  a parallel-sided crystal; the L a u e  
cases 

To avoid unnecessary complexity in the math- 
ematics, we shall mainly treat non-absorbing cases in 
this section. From the consideration of symmetry, 10 
and Ig must be independent of x. Equations (23) then 
reduce to 

~0 - - - -  - -  

cgt 

9~ Ot 

- olo+ 1 , (25a) 

- gig.+ aI o + QI eexp t -a ( t / 9o ) ] ,  (25b) 

where a is defined by equation (4), in which Xg = x'g, 
and t is the coordinate normal to the crystal surface. 

Equation (25) will be solved with the boundary 
conditions 

Io(0) = Ig(0) = 0. (26a, b) 

These conditions fit the real experimental conditions in 
the Laue case (70, 9g > 0). For the Bragg case (9° > 0, 
9g < 0), the solution is merely a mathematical tool for 
finding the real solution. Meanwhile, we shall not 
bother with the sign of 9g. 

The following treatments are standard in the sense of 
solving the differential equations. Nevertheless, the 
mathematical logic will be explained in brief. The detail 
can be found, for example, in Sneddon (1972). 

Taking the Laplace transform of equations (25), and 
remembering the conditions (26), we obtain the 
relations between Io(P) and Ig(p),  the Laplace trans- 
forms of  Io(t) and Ig(t), as follows: 

(9oP + a) Io(P)= aIg(p), (27a) 

(ggP + a) Ig (p)= alo(P) + Qlego/(9op + a). (27b) 

These can be solved immediately as 

Io(P) = (QIe 0/90 yg)/(p - a ) (p  - b) (p  - e), (28a) 

I , ( p )  = (QIe /9 , ) / (p  - a ) (p  - b), (28b) 

\ \ \ \  

s,, 

Fig. 2. The explanation of the additional term of equation (23b) 
representing the body source. 

where a and b are the solutions of the secular equation 
of equations (27). These and c are given in the explicit 
forms, 

a} { = - - M  o + (N~ + L~) ' /2= 0 (29a) 
b - - 2 M  0 (29b) 

c =-G/9o = - ( M 0  + No). (30) 

Here, M 0, N O and L 0 are the special case of M, N and L 
defined by equations (15), respectively, for non- 
absorbing cases (/l o = 0, xg = X'g). 
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The solutions Io(t ) and Ig(t) are given by the inverse 
Laplace transforms of lo(p) and Ig(p), namely 

y+ too 
1 t *  

Io(t ) - J (Qlea/7o Yg) 
2rci 

y- ico  

e pt 
x dp, (31a) 

( p - a ) ( p - b ) ( p - c )  
y+ ioo 

1 f e pt 
Ig(t) - (QIJ~e) dp, 

2rd ( p -  a)(p - b) y- ioo 
(31b) 

where y is the radius of convergence; y > 0 in the 
present problem. Integrations of this kind can be 
performed by the standard method of contour integral. 
The results are 

ea t ebt 

I°(t) = (alea/7° Yg) (a - b)(a - c) + ( b -  a)(b - c) 

eCt ] 

+ ( c -  a ) ( c -  b) ' (32a) 

Ig( t )= (QIe/?g) + - -  . (32b) 
a b b - a  

Using equations (29) and (30), we have 

Io(t) = (QIJa)e  -mot [cosh Mo t -  N°Mo sinh Mot 

- -  e-N°t], (33a) 

Ig(t) = (QIe/?g)e -Mot sinh Mot. (33b) 

The solution is physical for the Laue cases. In the 
case of wide beams, the cross sections of the O and G 
beams are changed by the factor ~'g/:~o. Therefore, the 
integrated intensity for the crystal of thickness T is 

Rg.i~ = Ie ' (YJYo)Ig(T)  (34a) 

= (QT/yo)e-Mor [sinh__ M o T ]  
[ M o T . (34b) 

This result is identical to equation (16) since M and 
(N 2 + L2) In reduce to M o in non-absorbing cases. 

It is worth mentioning here the conservation of 
energy. From the fundamental equations (25) and the 
boundary conditions (26), the relation 

7olo + yg lg=QIe (Yo /a ) {1 -exp[ - (a / yo ) t ] }  (35) 

must be satisfied everywhere in the crystal. The 
solutions (33) actually satisfy the relation (35). 

(c) The Bragg case (70 > O, ~ < O) 

In this case, the solutions (33) are hypothetical. In 
fact, Ig(T) is negative! However, the correct solution 

with the boundary conditions 

Io(0) = O, Ig(T) = 0 (36a,b) 

can be constructed by adding a suitable solution which 
satisfies the homogeneous part of equations (25). 

For this purpose, we shall calculate the solutions of 
the homogeneous equations with the boundary con- 
ditions 

IHo (O) = O, IH(T) = 1. (37a,b) 

The superscript H indicates the homogeneous equation. 
If one obtains the solutions 

IH(T) = R, Igt'(0)= T, (38a,b) 

one can write the correct solutions of the inhomo- 
geneous equation for the Bragg cases, 

IBo(T) = I o ( T ) -  R. Ig(T) ,  (39a) 

I~(0) = --T.Ig(T) ,  (39b) 

where Io(T ) and Ig(T) are the solutions [equations 
(33)] at t = T. In fact, T has the physical meaning of 
transmissivity of the G beam and R is reflectivity from 
the G to the O beam. 

The general solutions of the homogeneous equations 
have the forms 

IH(t) = A exp (at) + B exp (bt), (40a) 

IH(t) = CaA exp (at) + CbB exp (bt), (40b) 

H H where C a and C b are the intensity ratios (Ig/I o ) for the 
characteristic solutions exp(at) and exp(bt), res- 
pectively. They are determined by the secular equations 
a s  

C a = (yo a + a ) / a =  1, (41a) 

Cb = (Yob + a ) / a =  (No -- Mo) / (N  o + Mo). (41b) 

Using these relations and the boundary conditions 
(37a,b), we finally have 

T = Mo[M o cosh M o T + N O sinh M o T] -l  exp (M 0 T), 
(42a) 

R = (N o + Mo) sinh M o T[M o cosh M o T 

+ N O sinh M o T] -l. (42b) 

Inserting these and the solutions (33) at t = T into 
equations (39), we have 

IBo(T) = (QIe/cr) exp ( - M  o T) 

Mo 

N O sinh M o T + M o cosh M o T 

I~(O) = (QIe/lygl) sinh M o T [ N  o sinh M o T 

+ M 0 cosh M o T] -1. 

_ e-No T, 

(43a) 

(43b) 
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The integrated intensity is given by 

Rg.n= (QT/Yo) 
sinh M 0 T 

[N o sinh M o T 

+ M 0 cosh M 0 T]-L (44) 

When the thickness T is sufficiently large, 

Rg.s(T --, ~ )  = Q/a. (45) 

On the other hand, if the crystal is thin enough, Rg. 8 
(T --, 0) tends to the kinematical result, as it should. 

For absorbing crystals, we can calculate the inte- 
grated intensities along a similar line of considerations. 
We then have to start with the fundamental equations 
(23). In th0 Laue cases, we obtain the same results as 
equations (16), (20) and (22). In the Bragg cases, here, 
the final results of the integrated intensities are 
presented: 

Ro. 8 = (Qo/e)[ Tl(yoyg) 1/2 ] exp (--MT) 
× (1/LT)[(N 2 + L2) u2 

× {Nsinh [(N 2 + L2)l/2T] + (N 2 + L2) v2 

× cosh [(N 2 + L2)l/2T] -- exp ( - N T ) } - q ,  
(46a) 

Rg.B = (QIe)(T/Yo) sinh [(N z + L2)ln T] (1 /T)  

× {N sinh [(N 2 + L2) 1/2 T] 

+ ( N  2 + L2) 1/2 cosh [(N 2 + L2)U2T] }-1. (46b) 

It is worth noticing that the intensities obtained by 
the conventional approach are r times these expressions 
in the respective cases. This point will be discussed in 
the following section. 

4. Discussion 

In the present scheme of secondary-extinction theory, 
ET equations were derived from the wave equations. 
Through this task, the applicability and the meanings of 
ET equations were elucidated. The following points are 
particularly significant for the use of ET equations. 

(i) Applicable range: A >~ r. This has been fully dis- 
cussed in papers (II) and (III). 

(ii) Remarks (1) and (2) of § 2. Before discussing a 
few problems related to these remarks, it is worth 
pointing out that the intensity fields Io and Ig [equations 
(3)] are first obtained from the wave equation and then 
ET equations are justified by noticing that I o and Ig 
satisfy them. For this reason, the expressions of I o and 
I~ are primary and ET equations are auxiliary. This is 
not a hens-and,eggs argument. 

(a) The direct beam and the kinematical G beam 

The essence of Remark 2 is that ET equations are 
nothing to do with the direct beam (not wave) which 

penetrates through the crystal without creating the 
Bragg reflected beam. This point can be seen in 
equations (II.8 and 25). The direct beam is undefined 
there. If, however, we define it formally by taking the 
term r = 0 (non-reflected beam), it has a singular form 
(1/ar)lA 12 exp (-/~es 0) [a --, 01. By using the reverse of 
the rule to convert the differential equation to the 
difference equations adopted throughout papers (I) and 
(II) [equations (I.11 and 12)], the expression can be 
interpreted as (1/r)lAI2~(Sg) exp(-lteSo). Thus, the 
correct solution is ( I / r ) t i m e s  the conventional solution 
assuming I AI 2 ~(sn) for the incident beam [Werner et 
al.'s (1966) solution; equation (5)1. If we normalize 
I A 12 on the scale of 8E/?O = 1, the effective direct 
beam has the form (sin 20R)-2(2/r)fi(sg). Thus, one can 
see that only (2/r)  of the total incident energy con- 
tributes to the Bragg reflection. This is very reasonable 
because (2/r)  is the angular range of diffraction for a 
crystal of coherent size r in the order of magnitude. 

Unlike the direct beam, the integrated intensity of 
kinematical reflection must be independent of the 
crystal perfection except for the effective absorption 
factor, which includes dynamical effects. It is, in fact, 
I A 121/¢g 12 exp (--#e So) [the term with r = 1 in equations 
(II.8)1. This point will be discussed further in the next 
section. 

(b) Compar&on of  the traditional integrated intensity 
and the present one 

Traditionally, the integrated intensity is given by 

Rg=-~o f Jg(T,~)de, (47) 

where e is the angle of deviation of the incident 
direction from the maximum reflection [see equation 
(50) below], and Jg is the solution of D - H - Z  equations 
with the boundary conditions 

Jo(O) = I e, Jg(O) = 0 (48a,b) 

in wide-beam cases. Here, for clarity, we shall discuss 
this problem referring to the Laue case of a non- 
absorbing parallel-sided crystal, and the crystal is 
assumed to be type I according to Zachariasen's (1967) 
definition. Other cases can be discussed using similar 
considerations. What  then happens is that the intensity 
Jg is given as follows, 

Jg(T,  e) = [6(T/y o) + a~(T)62 + . . - ] ,  (49) 

where 6 is the coupling constant of the D - H - Z  
equations and is given by [cf. equations (I.4 and 5)] 

6 =  QW(e). (50) 

In these equations al(T)  is a coefficient depending on 
the diffraction conditions, and Q is proportional to 
I tCgl 2 [equation (17)] and W(e) is the angular spectrum 
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of the mosaic blocks. Inserting (49) into (47), one 
obtains 

R e ( T ) = Q ( T / y  o) + a~(T)a z f [W(e)]Zde + .... (51) 

Here, one of the complexities in the traditional theory 
of secondary extinction arises. Even in the case of 
parallel-sided crystals, in which Je(T, e) can be solved 
exactly, we have to know the integrations of multiple 
powers of the distribution W(e). This gives rise to an 
ambiguity in Re(T). 

In the present theory, the integrated intensity is 
(yJyo)Ie because ET equations involve the relations of 
the total intensities of O and G beams [Remark 1]. If 
we write I s in the form of a power series of the new 
coupling constant a, we have 

Re(T) = Q[(T/yo) + b,(T)a + ...1. (52) 

As discussed above [§ 4(a)], the correlation length r 
does not appear in the first term. Unnecessary com- 
plexity of the angular integration is now swept out. 

In § 2, the intensity distributions of the O and G 
beams were given for sufficiently narrow beams. The 
integrated intensities were given by a spatial inte- 
gration over the exit surface. In § 3, the intensity fields 
excited in the crystal for a sufficiently wide incident 
beam were calculated for both Laue and Bragg cases. 
This calculation immediately gives the integrated 
intensity. In Laue cases, it was confirmed that the 
results obtained by the two methods were identical. 
This shows not only a mathematical beauty but also 
that the present approach to secondary extinction is 
theoretically firm. 

One final point should be mentioned. In all the treat- 
ments of this paper, we have started with the 
fundamental equations (1) for simplicity. As discussed 
in paper (III), the theory will be improved by 
multiplying suitable reduction factors R o and R e by the 
correlation length r(=r2). This situation also holds for 
the integrated intensity. 

A P P E N D I X  
The explicit form of Uo(t) and us(t) 

The functions are defined by equations (16b) and (22a), 
respectively. First, we consider them in the forms of 
power series: 

co (½Lt)Z,(1 -- ~z), 
ug(t) = ½ ~ exp (Nt~) Z n! n! d~, (A.la) 

-1 tl=0 

1 

Uo(t) = ½ f exp(Nt~)(1 -- O 
--l 

oo (~Lt)2~+~( 1 _ ~2)~ 

x Z n i in  + 1)! d~. (A.lb) 
r/=0 

For convenience, we shall define the similar function 

~ (½Lt)2n+'(1--(2)n 
v = ½_~ exp (NtO n! (n + 1)! d~. (A.2) 

rt=0 
1 2 Letting y = Nt and p = (~Lt),  from these expressions 

we have the relations 

0 
_ _  [pl/2 v] -= Ug (A.3)  
0p 

and 

d o  
u o = v - - - .  (A.4) 

dy 

For integrating (A.3), the boundary condition 

v(p = 0) = 0 (A.5)  

is employed. Thus, one can obtain u o from ug simply by 
the integral and differential operations. 

The functional form ug(t) is well known, i.e. 

Ug(t) = sinh [(N 2 + L2)I/2t]/[(N 2 + L2)'/2t]. (A.6) 

From this expression it turns out that 

Uo(t) = (1/Lt) cosh[(N 2 + L2)VEt] - (N 2 + L2) I/2 

x sinh [(N 2 + LZ)~atl - exp ( -Nt)~.  (A.7) 
) 
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